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Chapter 2

Proposition 2.E.1: If the Walrasian demand function x(p, w) is homogeneous of degree zero, then
for all p and w:

n∑
k=1

∂x`(p, w)

∂pk
pk +

∂x`(p, w)

∂w
= 0 for ` = 1, ..., L.

In matrix notation, this is expressed as

Dpx(p, w) pT +Dwx(p, w)w = 0

Using elasticities, condition takes the following form:

L∑
k=1

ε`k(p, w) + ε`w(p, w) = 0 for ` = 1, ..., L.

Proposition 2.E.2: If the Walrasian demand function x(p, w) satisfies Walras’ law, then for all p
and w:

L∑
`=1

pl
∂x`(p, w)

∂pk
+ xk(p, w) = 0 for k = 1, ..., L,

or, written in matrix notion,
pDp(x,w) + x(p, w)T = 0

Proposition 2.E.3 : If the Walrasian demand function x(p, w) satisfies Walras’ law, then for all p
and w:

L∑
`=1

p`
∂x`(p, w)

∂w
= 1

or, written in matrix notion,
pDw(x,w) = 1

Proposition 2.F.1 : Suppose that the Walrasian demand function x(p, w) is homogeneous of degree
zero and satisfies Walras’ law. Then x(p, w) satisfies the weak axiom if and only if the following
property holds:

For any compensated price change from an initial situation (p, w) to a new price wealth pair (p′, w′) =
(p′, p′ − x(p, w)), we have

(p′ − p)[x(p′, w′)− x(p, w)] 6 0

with strict inequality whenever x(p, w) 6= x(p′, w′).

Proposition 2.F.2 : If a differentiable Walrasian demand function x(p, w) satisfies Walras’ law,
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homogeneity of degree zero, and the weak axiom, then at any (p, w), the Slutsky matrix S(p,w)
satisfies vS(p, w)vT 6 0 for any v ∈ RL.

Proposition 2.F.3 : Suppose that the Walrasian demand function x(p, w) is differentiable, homo-
geneous of degree zero, and satisfies Walras’ law. Then pS(p, w) = 0 and S(p, w)pT = 0 for any
(p, w).

Chapter 3

Proposition 3.C.1 : Suppose that the rational preference relation & on X is continuous. Then
there is a continuous utility function u(x) that &. (I guess it is not enough, the monotonicity
should not be omitted.)

Proposition 3.D.1 : If p� 0 and u(·) is continuous, then the utility maximization problem has a
solution.

Proposition 3.D.2 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & defined on the consumption set X = RL

+. Then the Walrasian
demand correspondence x(p, w) possesses the following properties:

(i) Homogeneity of degree zero in (p, w): x(αp, αw) = x(p, w) for any p, w and scalar α > 0.

(ii) Walras’ raw: p · x = w for all x ∈ x(p, w). (No excess money)

(iii) Convexity/uniqueness: If & is convex, so that u(·) is quasiconcave, then x(p, w) is a convex
set. Moreover, if & is strictly convex, so that u(·) is strictly quasiconcave, then x = (p, w) consists
of a singe element.

Proposition 3.D.3 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & defined on the consumption set X = RL

+. The indirect utility
function v(p, w) is

(i) Homogeneous of degree zero.

(ii) Strictly increasing in w and nonincreasing in p` for any `.

(iii) Quasiconvex; that is, the set {(p, w) : v(p, w) 6 v̄} is convex for any v̄.

(iv) Continuous in p and w.

Note that the direct utility function is independent of prices and income, whereas the indirect
utility function is independent of quantities of goods. An indifference curve corresponding to the
indirect utility function is convex but represents a higher preference if it is closer to the origin (The
shape is like direct utility function but the value is higher if it is closer to origin). Therefore, opti-
mizing with the direct utility function is a problem of maximizing under the assumption
of given prices and income, whereas optimizing with the indirect utility function is a
problem of minimizing (usually prices) under the assumption of given quantities.

Proposition 3.E.1 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & defined on the consumption set X = RL

+ and that the price vector
is p� 0. We have

(i) If x∗ is optimal in the UMP when wealth is w > 0, then x∗ is optimal in the EMP when the
required utility level is u(x∗). Moreover, the minimized expenditure level in this EMP is exactly w.

(ii) If x∗ is optimal in the EMP when the required utility level is u > u(0), then x∗ is optimal in
the UMP when wealth is p · x∗. Moreover, the maximized utility level in this UMP is exactly u.

Proposition 3.E.2 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & defined on the consumption set X = RL

+. The expenditure
function e(p, u) is

(i) Homogeneous of degree one in p.

(ii) Strictly increasing in u and nondecreasing in p` for any `.

(iii) Concave in p.
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(iv) Continuous in p and u.

Proposition 3.E.3 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & defined on the consumption set X = RL

+. Then for any p � 0,
the Hicksian demand correspondence h(p, u) possesses the following properties:

(i) Homogeneity of degree zero in p: h(αp, u) = h(p, u) for any p, u and α > 0.

(ii) No excess utility: For any x ∈ h(p, u), u(x) = u.

(iii) Convexity/uniqueness: If & is convex, then h(p, u) is a convex set, and & is strictly convex,
so that u(·) is strictly quasiconcave, then there is a unique element in h(p, u).

Proposition 3.E.4 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & and that h(p, u) consists of a single element for all p � 0. Then
the Hicksian demand function h(p, u) satisfies the compensated law of demand: For all p′ and p′′,

(p′′ − p′) · [h(p′′, u)− h(p′, u)] 6 0

Proposition 3.F.1 : (The Duality Theorem). Let K be a nonempty closed set, and let µK(·) be
its support function. Then there is a unique x̄ ∈ K such that p̄ · x̄ = µK(p̄) if and only if µK(·) is
differentiable at p̄. Moreover, in this case,

µK(p̄) = x̄

Proposition 3.G.1 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated preference relation & defined on the consumption set X = RL

+. For all p and u, the
Hicksian demand h(p, u) is the derivative vector of the expenditure function with respect to prices:

h(p, u) = ∇pe(p, u).

That is, h`(p, u) = ∂e(p,u)
∂p`

for all ` = 1, ..., L.

Proposition 3.G.2 : Suppose that u(·) is a continuous utility function representing a locally
nonsatiated and strictly convex preference relation & defined on the consumption set X = RL

+.
Suppose also that h(·, u) is continuously differentiable at (p, u), and denote its L × L derivative
matrix by Dph(p, u). Then

(i) Dph(p, u) = D2
pe(p, u).

(ii) Dph(p, u) is a negative semidefinite matrix.

(iii) Dph(p, u) is a symmetric matrix.

(iv) Dph(p, u)pT = 0.

Proposition 3.G.3 : (The Slutsky Equation) Suppose that u(·) is a continuous utility function
representing a locally nonsatiated and strictly convex preference relation & defined on the con-
sumption set X = RL

+. Then for all (p, w), and u = v(p, w), we have

∂h`(p, v)

∂pk
=
∂x`(p, w)

∂pk
+
∂x`(p, w)

∂w
xk(p, w)

for all `, k, or equivalently, in matrix notation,

Dph(p, u) = Dpx(p, w) +Dwx(p, w)x(p, w)T .

By Proposition 3.G.2 & 3.G.3, when demand is generated from preference maximization, S(p, w)
must be negative semidefinite symmetric, and satisfy S(p, w)pT = 0.

Proposition 3.G.4 : (Roy’s Identity) Suppose that u(·) is a continuous utility function representing
a locally nonsatiated and strictly convex preference relation & defined on the consumption set
X = RL

+. Suppose also that the indirect utility function is differentiable at (p̄, w̄)� 0. Then

x(p̄, w̄) = − 1

∇wv(p̄, w̄)
∇pv(p̄, w̄).
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That is, for every ` = 1, ..., L:

x`(p̄, w̄) = −∂v(p̄, w̄)/∂p`
∂v(p̄, w̄)/∂w

.
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